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Abstract Our report delves into the analysis of cutting-edge algorithms implemented for the enumeration
of maximal cliques in uncertain graphs, as proposed in "Improved Algorithms for Maximal Clique Search
in Uncertain Networks." We tackle the computational inefficiencies inherent in current methods by
examining two core-based pruning algorithms and a cut-based optimization technique from the paper.

These approaches offer considerable reductions in graph size while maintaining the integrity of cliques.

Graph Size
Clique Integrity

We implemented these algorithms and assessed their performance against established benchmarks using
real-world datasets, showcasing their potential to significantly advance the domain of uncertain graph

analysis in network studies and Bio-informatics.
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1. Introduction to the paper

Uncertainty is an inherent characteristic of real-world net-
works, where connections between entities are often proba-
bilistic rather than deterministic. Uncertain graphs, which
represent these networks, have gained prominence in various
domains, including social networks, biological networks, and
sensor networks. Maximal clique enumeration, the task of
identifying cohesive subgroups within these networks, plays
a crucial role in understanding their underlying structure and
dynamics. Existing algorithms for maximal clique enumer-
ation in uncertain graphs face significant challenges in han-
dling large-scale networks due to their high time complex-
ity. The computational burden grows exponentially with the
number of nodes in the graph, limiting the applicability of
these methods in real-world scenarios.

2. Problem Statement

The state-of-the-art algorithm for enumerating all maximal
(k,7)- cliques is very costly when handling large uncertain
graphs, as its time complexity is proportional to 2" where n
is the number of nodes in the uncertain graph. This challenge
hinders the effective analysis and processing of large uncer-
tain datasets, limiting the potential benefits of maximal clique
enumeration in real-world applications.

3. Related Terms

3.1 Prerequisites

1. Uncertain Graph: Uncertain graphs are a type of
graph where the edges are associated with probabil-
ities, representing the likelihood of their existence.
Each edge in this graph has an associated probabil-
ity, which represents the likelihood that this connec-
tion (edge) exists.

2. Clique: In graph theory, a clique is a subset of vertices
of an undirected graph such that every two distinct
vertices in the clique are adjacent; that is, every two

vertices in the clique are connected by an edge.

3. Maximal Clique: A maximal clique is a clique that
cannot be extended by including one more adjacent
vertex, meaning it’s not a subset of a larger clique.
Note that there can be more than one maximal clique
in a graph.

3.2 Mathematical Reasoning:

Uncertain graphs are graphs where the existence of edges is
uncertain. This uncertainty can be modeled in a variety of
ways, such as using probabilities, fuzzy sets, or rough sets.
Cliques are subgraphs in which all pairs of vertices are adja-
cent. Maximal cliques are cliques that are not contained in
any other clique. The (k, T)-clique problem is the problem of
finding all cliques of size at least k in a graph with probability
atleast . Finding a maximal (k, T)-clique is a more challenging
problem, as it requires finding a clique that is both large and
has a high probability of existing. Given an uncertain graph G
and two parameters k and T, the problem is to find a maximal
clique C in G such that:

1 |C|>k

2. P(CisacliqueinG) > 7

3. C is maximal, meaning that there is no clique C’ in G
such that C’ D Cand P(C'isacliquein G) > T

4. Contributions

The main contributions of this paper include:

1. Two novel core-based pruning algorithms:

¢ These algorithms effectively reduce the graph size
without missing any maximal cliques by identi-
fying and pruning nodes that are not part of any
core, a minimal subset of nodes n' (wheren’ < n)
that maintains the clique property.

® The algorithms utilize a dynamic approach on
the Bron-Kerbosch algorithm to efficiently iden-

Final Report DBS

Maximal Clique Search in Uncertain Networks

st22n, as22cq, jn22i



Maximal Clique Search in Uncertain Networks

2

tify cores using backtracking, avoiding redundant
computations.

* The algorithms significantly reduce the search
space for maximal cliques, leading to substantial
improvements in execution time.

2. A cut-based optimization technique:

e This technique further enhances pruning per-
formance by identifying and analyzing cuts of
cliques, sets of nodes that, when removed, disrupt
the clique property.

¢ The technique employs a novel cut-identification
method to efficiently identify cuts without intro-
ducing significant overhead.

¢ The technique prunes nodes based on the iden-
tified cuts, eliminating additional nodes that are
unlikely to be part of any maximal cliques.

¢ The technique further reduces the computational
burden and improves the overall efficiency of the
maximal clique enumeration process.

3. Improved scalability:

¢ The proposed algorithms exhibit superior scala-
bility compared to existing methods, enabling the
analysis of large uncertain graphs that were pre-
viously intractable.

e The combination of core-based pruning and cut-
based optimization significantly reduces the com-
putational complexity of the algorithm.

¢ The algorithms demonstrate superior perfor-
mance on datasets of varying sizes, effectively
handling large-scale uncertain graphs.

4. Enhanced effectiveness:

¢ The algorithms maintain the completeness of the
results, ensuring that no maximal clique is missed.

e The algorithms preserve the accuracy of the re-
sults while achieving significant improvements in
efficiency.

¢ The algorithms guarantee that all maximal cliques
satisfying the given size and cohesiveness require-
ments are correctly identified within the pruned
nodes 1’ instead of n (where n’ < n).

5. Related Work

The state-of-the-art method for tackling the issue of mining
maximal cliques in uncertain graphs seems to be an area of
ongoing research with various approaches being optimized
for different aspects of the problem. No single method stands
out as the definitive best, but several notable techniques and
improvements are highlighted in the passage:

1. Core-based and Cut-based Optimization Tech-
niques: The current work under discussion focuses
on advanced pruning techniques to develop faster
algorithms for computing maximal cliques in uncer-
tain graphs. These are proposed to overcome the
limitations of existing methods for large uncertain
graphs by reducing computational complexity.

2. Bron-Kerbosch Algorithm with Improvements: The
Bron-Kerbosch algorithm, especially with the greedy
pivoting technique introduced by Tomita et al. [1] and
the degeneracy ordering heuristics by Eppstein et al.
[3], has been considered optimal in terms of time com-
plexity for listing all maximal cliques. This algorithm
is widely recognized in the literature for its efficiency

and has seen various enhancements to adapt to differ-
ent data structures and memory constraints.

3. Branch and Bound Techniques: Several papers have
focused on branch and bound techniques with various
optimizations, such as the Russian Doll Search frame-
work, MaxSAT bounds, and coloring bounds. These
techniques are tailored for deterministic graphs but
have served as a foundation for subsequent research
into uncertain graphs.

4. Algorithms for Special Graph Data: Research by
Viard et al. [4] and Li et al. [5] on temporal graphs and
signed graphs, respectively, represents specialized ap-
proaches to the problem, addressing the unique char-
acteristics of these graph types.

5. Parallel Algorithms and 1/O Efficiency: The work by
Cheng et al. [6], [2] for disk-resident graphs and paral-
lel computation addresses the practical aspects of max-
imal clique enumeration, making it suitable for real-
world applications where memory and computational
resources are significant constraints.

6. Algorithms for Large Uncertain Graphs: While ear-
lier algorithms, such as the one presented by Miao et
al. [7], have endeavored to tackle the maximal clique
problem in uncertain graphs, their efficiency is com-
promised when applied to large graphs due to their ex-
ponential time complexity. Many existing algorithms
are designed within the framework of deterministic
graphs, rendering these techniques unsuitable for di-
rect application to sizable uncertain graphs.

In summary, the state-of-the-art in maximal clique mining in
uncertain graphs is multifaceted, with the latest work aim-
ing to improve upon the computational efficiency of existing
methods, especially for large-scale and uncertain graph data.
It involves a combination of core-based pruning to reduce the
size of the problem space, cut-based techniques to enhance the
efficiency of the pruning process, and adaptations of proven
deterministic graph algorithms to the uncertain graph con-
text.

6. Novelty of the Selected Paper

6.1 Proposed Idea

The paper Improved Algorithms for Maximal Clique Search in Un-
certain Networks by Rong-Hua Li et al. proposes two new core-
based pruning techniques, an improved enumeration tech-
nique, and a cut-based optimization technique to improve the
efficiency of maximal clique search in uncertain graphs.

6.2 Differences from Existing Work

The novel aspects of the proposed algorithms are as follows:

¢ Core-based pruning techniques: The proposed core-
based pruning techniques are more effective than tra-
ditional core-based pruning techniques for reducing the
size of the graph to be searched in uncertain graphs.

¢ Improved enumeration algorithm: The proposed enu-
meration algorithm is based on the Bron-Kerbosch algo-
rithm, but it incorporates several new optimizations to
improve its efficiency for uncertain graphs.

¢ Cut-based optimization technique: The proposed cut-
based optimization technique further improves the prun-
ing performance of the core-based pruning techniques.

¢ Color-based upper bounding techniques: The research
focuses on utilizing two advanced color base bounding
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rules in addition to a basic coloring scheme with a greedy
approach to acquire tighter bounds while finding the
maximum clique.

6.3 Effectiveness

The proposed algorithms are effective for solving the problem
of maximal clique search in uncertain graphs because they:

® Reduce the size of the graph to be searched: The core-
based pruning techniques and the cut-based optimization
technique significantly reduce the size of the graph to
be searched, which leads to significant performance im-
provements.

* Are specifically designed for uncertain graphs: The pro-
posed algorithms are specifically designed for uncertain
graphs, which makes them more efficient for real-world
graph problems unlike the existing algorithms that are
designed for deterministic graphs.

6.4 Mathematical Outlook

The proposed core-based pruning techniques can be analyzed
using the following mathematical framework:

Let G be an uncertain graph and C be a maximal (k, T)-clique
in G. A core of a clique C is a subset of C such that all pairs of
vertices in the subset are adjacent with probability at least 7.
The first core-based pruning technique works by removing
from G all vertices that are not contained in any core of a max-
imal (k, T)-clique. This pruning technique can be justified us-
ing the following theorem:

Theorem: If a vertex v is not contained in any core of a maxi-
mal (k, T)-clique in G, then v cannot be contained in any max-
imal (k, T)-clique in G.

The second core-based pruning technique works by remov-
ing from G all vertices that are contained in a core of a max-
imal (k, T)-clique, but the probability of the core existing is
less than 7. This pruning technique can be justified using the
following theorem:

Theorem: If the probability of a core of a maximal (k, T)-clique
in G is less than 7, then the core cannot be contained in any
maximal (k, T)-clique in G.

The proposed cut-based optimization technique works by
partitioning the graph G into a set of subgraphs and then
pruning each subgraph using the core-based pruning tech-
niques. The partitioning of the graph G is performed using
a cut-based algorithm, which is a type of graph partitioning
algorithm that minimizes the number of edges between the
subgraphs by discarding all the least promising edges.

The proposed enumeration algorithm is based on the Bron-
Kerbosch algorithm, but it incorporates several new optimiza-
tions to improve its efficiency for uncertain graphs. For exam-
ple, the proposed algorithm uses a new branching strategy
and a new pruning strategy.

7. Technical Section

The proposed research introduces novel algorithms and
methodologies distributed across three distinct phases within
the proposed approach for addressing the problem state-
ment associated with uncertain graphs. These methodological
phases encompass the integration of Core-Based Pruning Al-
gorithms, the enumeration of all maximal uncertain cliques,
and the pursuit of maximum uncertain clique identification.

7.1 Algorithms

1. Core-Based Pruning Algorithm followed by Cut-
Based Optimization: In the core-based algorithms,
since cores in this context are subsets of vertices in
a graph G, each vertex in the subset has to have a
degree greater than the threshold 7. The first core-
based pruning algorithm is based on the (k, T)-core
the state-of-the-art algorithm. We show that any max-
imal (k, T)-clique must be contained in the (k, T)-core.
To efficiently implement this pruning rule, we devise
a new dynamic programming (DP) based algorithm
to compute the (k,7)-core. Compared to the exist-
ing algorithm, the new DP-based algorithm reduces
the time complexity for computing the (k, T)-core from
O(mdmax) to O(md), where dmax is the maximum de-
gree of the nodes in the deterministic graph G of G and
6 (0 < dmax ) is the degeneracy of G. The algorithms
are referred to as DPCore and DPCore+ respectively.
The DPCore makes use of a threshold 7-degree (the
largest integer r that meets P(r(du(G) > r)) > 1) to
compute the (k, T)-core, while the DPCore+ makes use
of an additional parameter T-core number (the largest
k such that there is a (k, T)-core containing u), a trun-
cated version of threshold called truncated t-degree,
and a top product probability metric all of which get
rid of less promising nodes while generating the sub-
graphs ensuring a smaller subgraph which could be
enumerated more efficiently. For further optimization,
a cut-based approach is incorporated into the new DP-
Core+ algorithm suggested, the cut-based approach
ensures that when a cut x = (S, T) is made to gen-
erate a cut set E,, all edges in E, can be deleted if
there is no maximal (k, T)-clique subgraph containing
the edges in Ey. Since the deletions of the edges in E
will partition G¢ into several small connected uncer-
tain subgraphs, the computational costs for finding all
maximal (k, T)-cliques can be significantly reduced.

2. Enumerating all Maximal Uncertain Cliques: A new
maximal (k, T)-clique enumeration algorithm, called
MUCE, is used by integrating the core-based pruning
techniques that were stated earlier into the backtrack-
ing enumeration algorithm that already exists. Un-
like in the backtracking enumeration algorithm, we
also integrate the (Topk, T)-core pruning technique
into the backtracking enumeration algorithm to prune
unpromising search branches. Each connected part in
the algorithm calls the backtracking enumeration algo-
rithm MUCE to find all maximal (k, 7)-cliques. MUCE
admits five parameters (R,C, X, k, 7). R denotes a -
clique which may be expanded to a maximal (k, 7)-
clique. C is the set of candidate nodes that is used
to expand the current t-clique R. X denotes a set of
nodes that can expand the current 7-clique R, but have
already been explored in a different search path by the
algorithm. The algorithm first checks whether the cur-
rent T-clique R is a maximal (k, 7)-clique or not. If
so, the algorithm outputs R and terminates the cur-
rent search path. To avoid repeatedly enumerating
the same maximal (k, T)-clique, the nodes in C are se-
lected following a lexicographical ordering. Also, the
algorithm incorporates techniques from the existing
systems to determine the set X for the expanded 7-
clique R’ (line 20). Subsequently, the algorithm recur-
sively calls the same procedure to expand the 7-clique
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R’ (line 21). After processing a node u, the algorithm
adds it into X, because u has already been processed
in the current search path which cannot be explored in
the following recursions.

3. Maximum Uncertain Clique Search: Specifically, the
new approach keeps track of the size of the largest
maximal (k, T)-clique C* found so far when obtaining
a maximal (k, 7)-clique, denoted by ¢ (where |C*| =
0). If the size of the candidate set C is smaller than
o —|R| (or |[RUC| < 0), the algorithm can early termi-
nate, because all maximal (k, T)-cliques in the current
search subspace are no larger than ¢. Since the upper
bound using the candidate set C is not as tight as ex-
pected, we could choose a color-based upper bound.
Here, we assign a color to each node in G using a
degree-ordering based greedy coloring algorithm so
that no two adjacent nodes have the same color. To
optimize further, we could use an advanced approach.
The basic color-based upper bound only considers the
clique size constraint, which ignores the clique prob-
ability constraint. Here, we develop a tighter color-
based upper bound based on both the clique size and
clique probability constraints. This ensures a higher
upper bound and a smaller clique set to enumerate at
each step.

7.2 Analysis and Implementation

e DPCore, DPCore+: The Improved Algorithms for Maxi-
mal Clique Search in Uncertain Networks paper proposes
two new core-based pruning techniques (DP-Core & DP-
Core++) and a cut-based optimization technique to re-
duce the size of the graph to be searched, which is a key
performance improvement for large uncertain graphs.
State-of-the-art methods typically focus on optimizing ex-
isting algorithms, such as branch and bound and the
Bron-Kerbosch algorithm. While DPCore prunes the
nodes based on the graph size and edge probability, DP-
Core+ uses the degeneracy of the graph G and TopK
product probability while pruning out the nodes. TopK
product probability ensures that the higher product prob-
ability of the edges would ensure the existence of a maxi-
mal clique.

e MUCE, MUCE+, MUCE++: Two new algorithms
MUCE+ and MUCE++ are implemented to the state of
the art algorithm MUCE for improved Maximal Uncer-
tain Clique Enumeration. MUCE+ uses the the (k, T)-core
pruning rule in addition to the existing MUCE algorithm
while MUCE++ integrates the the (Topk, T)-core pruning
rule. Both of which optimize the required nodes to be
enumerated through, resulting in efficient memory us-
age while working with huger uncertain graphs. Both
MUCE+ and MUCE++ are integrated with the cut-based
optimization technique to further optimize the final re-
sults. This approach ensures that no maximal clique is
left behind while no additional resources are utilized to
enumerate through unpromising nodes.

e MUCE, MUCE+, MUCE++: To address the retrieval
of the maximum clique of all the cliques in an uncer-
tain graph, the author introduces MaxUC and MaxUC+
in contrast to a general enumerating technique such as
MaxRDS. The candidate-bounding and color-bounding
techniques used in MaxUC and MaxUC+ respectively
provide tighter upper bounds and smaller search spaces
at each interation resulting in a faster retrieval of the

maximum clique. While both the algorithms outperform
the state-of-the-art algorithm MaxRDS, the color-based
greedy bounding in MaxUC+ makes it quicker and more
efficient than its counterparts.

The DP-based pruning algorithms proposed in the paper are
very effective for pruning uncertain networks without miss-
ing any maximal cliques. The results of extensive experiments
on six real-world datasets demonstrate that the proposed al-
gorithms outperform the state-of-the-art algorithms by a sig-
nificant margin.

The Improved Algorithms for Maximal Clique Search in Uncer-
tain Networks paper develops new pruning techniques that
are specifically designed for uncertain graphs. State-of-the-art
methods typically apply optimizations that are more general-
purpose, such as the Russian Doll Search framework and
MaxSAT bounds.

8. Experiments

8.1 Tools and Resources:

Software:

1. C++: To perform Maximal Clique Search in networks
using different algorithms and prune methods that are
defined in the paper

2. Python: To visualize comparison of different algo-
rithm and prune methods over graphs.

3. System Requirements: We performed our exper-
iments on Intel(R) Xeon(R) Silver 4114 CPU @
2.20GHz with 64GB RAM.

Data Sets:

1. Ask ubuntu:
askubuntu.html

https:/ /snap.stanford.edu/data/sx-

2. WikiTalk: https:/ /snap.stanford.edu/data/wiki-
Talk html

3. Superuser: https:/ /snap.stanford.edu/data/sx-
superuser.html

8.2 Experimental Setup:

A total of five experiments are performed, on three datasets,
WikiTalk, AskUbuntu, SuperUser.

¢ Expl: Runtime of DPCore and DPCore+:
Parameters: varying values of k and 7 against runtime.
Conclusions: DPCore+ is much faster than DPCore on
both WikiTalk, Askubuntu, and Superuser. Moreover,
DPCore+ is more than one magnitude faster on all three
datasets.

¢ Exp2: Runtime of MUCE, MUCE+, and MUCE++:
Parameters: varying values of k and 7 against runtime.
Conclusions: MUCE++, along with MUCE+, exhibits sig-
nificant runtime efficiency improvements compared to
MUCE, on larger datasets, both MUCE++ and MUCE+
demonstrate runtime performance at least one order of
magnitude faster than MUCE.

¢ Exp3: Runtime of MaxUC, MaxRDS, and MaxUC+:
Parameters: varying values of k and 7 against run-
time. Conclusions: MaxUC+ outperforms competitors
significantly, showcasing its efficiency in comparison to
MaxRDS and MaxUC.

¢ Exp4: Memory overhead:

Parameters: AskUbuntu, SuperUser, and WikiTalk
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FIGURE 4. Exp4: Memory overhead
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FIGURE 5. Exp5: Effect of different probability distributions on Runtime.

against memory. Conclusions: Low memory usage re-
ported in DPCore+ when compared to DPCore; MUCE++
when compared to MUCE+ and MUCE; MaxUC+ when
compared to MaxUC and MaxRDS for all three datasets.
e Exp5: Effect of different probability distributions on
Runtime:
Parameters: Exponential distribution: varying from 2 to
6, Uniform distribution: in a range [0, 1] against time.
Conclusions: Different trends in the runtime can be ob-
served with the increase of A on AskUbuntu dataset, it
can also be observed that the maximum clique search al-
gorithms are robust with respect to different probability
distributions in most cases.

8.3 Evaluation Methods:

This paper evaluates the proposed algorithms using three
real-world datasets, which encompass social networks and
communication networks. Subsequently, we compare the
performance of the proposed algorithms with state-of-the-
art counterparts on these datasets, considering runtime and
memory efficiency as key metrics.

8.4 Performance Metrics

The paper evaluates the performance of the proposed algo-
rithms in terms of time complexity, memory usage, and ac-
curacy, while evaluating the precision of various algorithms
with varying parameters. The paper also tests the effect of
different probability distributions (i.e., varying A).

8.5 Reported Results

The Improved Algorithms for Maximal Clique Search in Uncertain
Networks paper shows that the proposed algorithms achieve
significant performance improvements over state-of-the-art
methods, especially for large uncertain graphs. State-of-
the-art methods achieve good performance on a variety of
datasets, but their scalability is limited for large uncertain
graphs.

8.6 Experimental conclusions and revelations:

In our implementation of the project, we encountered a chal-
lenge regarding edge weights, as the datasets we utilized were
unweighted. To address this, we adopted a strategy of as-
suming an initial edge weight of 1 and incremented it by 1
for each interaction to approximate the edge probabilities as
suggested by the authors. This approach led to relatively uni-
form data, which in turn influenced our algorithmic results
to show minimal variation. Nonetheless, this uniformity in
edge weights does not contradict the efficacy of the pruning
techniques we employed. Notably, the pruned algorithms ex-
hibited significantly reduced runtimes, emphasizing the effec-
tiveness of these techniques in enhancing computational effi-
ciency. Additionally, it’s important to mention that our results
were obtained using advanced hardware, specifically an In-
tel Xeon Silver 4114 CPU operating at 2.20 GHz with 64GB
RAM. This superior computing power likely contributed to
the improved performance and efficiency observed in our ex-
periments.

9. Conclusion

The proposed algorithms in the paper "Improved Algorithms
for Maximal Clique Search in Uncertain Networks" are effec-
tive for solving the problem of maximal clique search in un-
certain graphs because they reduce the size of the graph to be
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searched and are specifically designed for uncertain graphs.
The proposed algorithms have been experimentally shown
to achieve significant memory and runtime improvements
over state-of-the-art methods, especially for large uncertain
graphs.
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